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Abstract. Interms of the action-angle Wigner function, we analyse the effects of energy spectrum
anharmonicity on the evolutions of wavepackets in long time scales. The formulation shows a close
connection between classical periodic motions of phase space points and the quantum (full and
partial) revivals of wavepackets. This enables us to find the conditions of (full and partial) revivals
in an intuitive way. For one-dimensional cases, we obtain analytic solutions for times of equal
partial revivals, i.e. an initial wavepacket splits equally into several small parts in long time scales.
Numerical results for the JC model confirm the theoretical predictions.

1. Introduction

Temporal behaviour of an initially prepared wavepacket have been extensively investigated
both experimentally and theoretically [1-8]. These studies substantially deepen our insight
into the fundamental problem of transition from quantum to classical mechanics [9,10]. Recent
experimental advances in quantum optics and atomic physics [11-16] add new interest to this
problem. For example, by ultrashort laser pulse, one can generate and monitor highly localized
atomic Rydberg wavepackets which are a coherent superposition of highly excited states. This
provides valuable information about structures of atoms. On the other hand, in cavity quantum
electrodynamic (QED) experiments, an electromagnetic field is usually in wavepacket form,
namely a field-coherent state. In higheavities, one is able to study the long-time behaviour

of a single mode of field wavepacket interacting with one atom, which is a powerful way to
explore and test the fundamental model of field—atom interaction.

During evolution, a wavepacket often resumes its initial form repeatedly. In a short time
scale, a wavepacket generally exhibits an overall motion along a classical orbit of phase space
while its shape becomes deformed. This behaviour is similar to the corresponding classical
Liouville density. This classical behaviour, however, stops when the discreteness of the energy
spectrum takes into effect. Then quantum behaviour substantially deviates from its classical
counterpart. Infact, there is only a finite number of frequengigseffectively involved in the
guantum motion. When every involved frequency’s phase shifbecomes approximately
the same (in the sense of mod 2with each other at time, the initial wavepacket revives.

This kind of behaviour is a general property of bounded quantum systems. It is pronounced
in semiclassical regions, where the involved energy spectrum is almost equally spaced.

Between two consecutive full revivals, there are partial revivals. In terms of phase space
distribution functions, such as the Wigner function [17, 18] or Husimi function [19], the initial
wavepacket breaks into several small regular forms. Generally speaking, full and partial
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revivals of wavepackets are the result of anharmonicity of the involved frequencies. In time
scales when only the first order of the anharmonic term takes effect, i.e. the phase shifts caused
by high-order anharmonic terms are negligibly small, the behaviour of full and partial revivals
are simple [2,20]. The time interval between two consecutive full revivals is a constant. And at

a fraction of the interval, the initial wavepacket breaks equally into several small wavepackets,
which are equally spaced along the invariant tori.

When higher orders of anharmonicity take effect in longer time scales, a wavepacket has
more complicated forms of (full or partial) revivals. One needs more sophisticated skills,
as shown in [1], to find out the relations between full revival times and higher orders of
anharmonicity. Under the influence of high-order anharmonicity, the initial wavepacket may
become several unequal parts at times of partial revivals, which usually locate irregularly along
the invariant tori [4].

To investigate the effects of high-order anharmonicity on the behaviour of wavepackets,
we employ the Wigner function in terms of action-angle variables. This discrete phase space
representation exhibits an intuitive relation with the corresponding classical Liouville density,
and manifests naturally the conditions of full and partial revivals. In section 2 we show that,
in terms of the action-angle Wigner function, quantum density is distributed in some discrete
tori. Thus, there are partial revivals when the distribution on each individual torus recovers its
initial form, and its central point moves to one of several possible angles. In this formulation,
full revivals are special cases of partial revivals. In section 3, we obtain analytical expressions
of such partial revival times for one dimensional cases. Application to the Jaynes—Cummings
(JC) model is discussed in section 4. Numerical results for large detuning cases confirm with
theoretical prediction. Conclusions and some comments are presented in section 5.

2. Conditions of partial revivals of wavepackets in terms of action-angle Wigner
function

For a classical integrable system witlilegrees of freedom, there extstonstants of motion

I = (14, ..., I})thatcan serve as canonical momenta, namely the action variables. Each action
variableI corresponds to an invariant torus. The conjugate coordinates of the action variables,
i.e.the angle variablgs= (04, ..., 6;), label positions on the invariant torus. Many properties

of an integrable system have analytical forms in terms of action-angle variables. For example,
evolution of the Liouville density can be simply writtenas(I, 0, 1) = p, (I, 0 — w(I)t, 0),
wherew(l) = (w1(1), ..., wi (1)) is the frequency of the torus associated with the acfion
w;(I) = 55, H(I) with H(I) being the Hamiltonian.

Correspondingly, the quantum counterpart of the above systent lga®d quantum
numbersn = (n1,...,n;). The eigenenergies and their corresponding eigenstates are
functions of the good quantum numbefs|p,,) = E(n)|¢,), whereH is the Hamiltonian.

In semiclassical regions, the quantum numbers have relations to classical action variables in
the sense of EBK quantization [21}, = «; + hn;, whereq; is a constant.

From this observation, we define the action-angle Wigner function as follows:

1 o
F(0,1/2:1) = 5= 3 & ™ (WD) urm 2} (bnm /2l ¥ (1)) (1)

wheren’ - @ = ny61 + - -- + n,6;, n; andn; are integers; the summation is over all possible
integers{ny, ny, ...}, and if one of(n; & n;)/2 is half-integer, we defing,+n)2) = 0. For

the case of harmonic oscillator, the action-angle Wigner function is also referred to as the
number-phase Wigner function. Many authors employ it [22—24] to investigate the quantum
phase problem [25].
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F(0,n/2;t) has similar properties as the usual Wigner function: (i) It contains all
information of the density operator, i.e. the density operator can be reconstructed from the
action-angle Wigner function

2
(1) = Z/O F(0,n/2;1)A(0,n/2)do 2)

where

AO.1/2) = €™ |Pmim)2) (bin-n2l- €)

Using A(8, n/2), the action-angle Wigner function can be expressed &k n/2;1) =
%tr(ﬁ(t)fi(e, n/2)). (ii) Integration of F (0, n/2; r) over @ results in the probability of

the wavefunction located at stéts, ») if n/2 is an integer vector, i.e. all of its components,
ni, ny, ..., are even-integer. However, if onemnf/2 is half-integer, the integration vanishes.
(iii) In the classical limit, the equation of motion of (8, I;7) = f(0,a + hn/2;t) =
F(0,n/2;t) becomes the Liouville equation in terms of action-angle variables. (iv) In
semiclassical regions, the expansion coefficients of a wavepagked) = (¢, |V (0)), is
effectively non-zero only in a narrow region roung. In this narrow region, the phase of
v,,(0) can be approximated by its Taylor expansion up to the first order, i.e. a linear function
of the quantum numbers [2]. Thus the density of the wavepacket has the form

PO R Y foun fa€20 T o) (] (4)

where f,, = [¥,(0)], ¥,(0) = f,€°™, and§;(n) = ;2-O(n). From the Fourier
transformation theory one sees that, in the action-angle phése space, the action-angle Wigner
function of a wavepacket is centred(atng), ng), whereng is the central point of;, (f,, has
maximum value atg). (v) From (2), one can transform the action-angle Wigner function into
other kinds of density distribution functions. For example, one obtains the Husimi function
from the action-angle Wigner function by a smoothing procedure, and the smooth function is
the action-angle Wigner function of the Gaussian wavepakkgto, n),

2
pu(q,p) =21 Z/o F(0,n)F,,(0,n)do. (5)

Here(q, p) is the central point of the Gaussian wavepacket. From the above properties and
noting thatF (8, n/2; t) can be negative, we interprei0, n/2; t) as quasi-probability of the
wavefunction located at phase space p@hin/2) for all integers{ni, no, .. .}.

The action-angle Wigner function has two special properties. Firstly, it is periodic in the
angle variables (0, n; 1) = F(0 + 27, n; t); and secondly, it is distributed on discrete tori
of the action-angle phase space. These two properties play important roles in our following
discussions of (full and partial) revivals of wavepackets.

If the action-angle Wigner function of a density operator is initially distributed on one
torus, i.e. it vanishes on other tori, then it will remain on this torus during the evolution. In
fact, the density operator of an initial wavepacket is a linear combination of small components,
and each component is only distributed on one torus:

A) = pul®) (6)
where

P =D (nal HOn,) ) (B, . 7

ni+ny,=2n
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Accordingly, the Wigner function can also be decomposed as
F@,n;1) =) Fn(6,n;0) ®)

where
Fn(8,m51) = 1 tr(pm (1) A8, n)). )
27

Fn(0,n; 1) = 8,,,F,(0,n; 1) is only distributed on the torus associated with the quantum
numbern. It is easy to see that evolution of the componEnto, n; 1) is restricted within its
own torus.

The initial wavepacket revives (resumes it original form) at time- ¢ if and only
if each component resumes its initial form at a same a®e), i.e. F,,(0,n; 1) =
F,(6 — ©(7), n; 0) with ®(z) independent ofi. There are times when eveR}, (0, n; r)
resumes its original shape, but their central angle points are located at different positions,

Fn(es n; T) = Fn(0—®(n),n, 0) (10)
where®(n) assumes one of several possible values. At these times, the original wavepacket
becomes several small wavepackets, namely partial revivals of the initial wavepacket.

Since (¢, |V (1)) = exp(—iE(n)t/h){¢,|¥(0)), according to (7)—(9), equation (10)
means that the partial revivals can occur at times when

[E((n+n/)/2) — E(n —n)/2)]t/h = ©(n/2)-n’ (mod 2r) (11)
and

On/2)-n' (mod 2r) € {O1, ..., 0y} (12)
whereM is the number of small wavepackets that appear in the phase spade=Ii, i.e.
©(n/2) is independent of:, (11) becomes the condition for full revivals of wavepackets,
which is equivalent to that of [1].

According to our following discussions, equations (11) and (12) only predict ‘equal’ partial
revivals, i.e. the initial wavepacket breaks equally into several small parts. However, we can

obtain general conditions of partial revivals in the same way. To this end, we decompose a
initial density operator as

Whereﬁmn = |¢m>(¢m|ﬁ|¢n) (¢n| + |¢n>(¢n|ﬁ|¢m><¢m| The action-angle Wigner function
of .y is initially a cosine form,
pmn(ea l’ 0) = Amn COS[(m - n)(0 - 00)]8l,(m+n)/2‘ (14)

It is distributed only on the invariant torus associated with the quantum numbef, and
evolves in a way like a travelling wave,

pmn(ev l, t) = Amn COS[(m - n)(0 — Wmnl — 00)]8l,(m+n)/2 (15)
wherew,,,, - (n — m) = [E(n) — E(m)]/h. When all the phase shifts,,,,t become the

same anglémod 2r), the initial wavepacket revives. Partial revivals occur at times when the
phase shift,,,,t have several possible anglgsod 2r). i.e.

[E(n) — E(m)]t/h = O(n, m)-(n—m) (mod 2r) (16)

where ®(n, m) - (n — m)(mod 2r) has several possible values. The ‘travelling waves’
omn (0,1, t) with the same phase shift form a small wavepacket. However, many of such
partial revivals are ‘unequal’ ones, i.e. the initial wavepacket breaks into several unequal parts.
From this general condition, one sees that at a fractional time of full revivel3/) T, there

is a partial revival [4], where: < M are two integers, and is the full revival time.
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3. ‘Equal’ partial revivals for the one-dimensional case

The conditions of equal partial revivals (11) and (12) have analytic solutions in one-dimensional
cases. Here only one single quantum number is involved to expand the initial wavepacket in
the eigenbasis of the Hamiltonian

Nmax

WO)~ Y Yu(0)lgy) (17)
where the expansion coefficients of the wavepacket are effectively non-zero only in the region
nmn < B < nmax [N this region, we assume that the spectrfiir) is approximately a
quadratic function of the quantum numberi.e. the coefficients of the Taylor expansion of
E (n) decrease rapidly for third and higher orders. Thus the spectrum can be expressed as

E(n) =) _wi(n—no) (18)
i=0

with {w;} satisfying
w2 > |ws| > -+ > |wm| > |wmea] > -+ (19)
Hereng is the central point of the initial wavepacket in the eigenbasis,| > |v,|, and
i = %%E(x)u:no, wo = E(ng). In semiclassical regions, the effective Planck congtant —
is a small quantityh” < 1, andw; ~ W%%E(m,:,{), with I being the action variable and
Iy = a + hng. Thus, equation (19) is usually satisfied in the semiclassical region.
LetT; = 2r/|w;|, thus{T;} form a cascade of time scalés « T3 < ---. Atatime scale

(t/R) < T,, the higher-order terms,.1(n — ng)**1, ..., can be neglected in the phase shifts
8, = E(n)t/h,
A’ .
8u(k) = (t/RYE;(n) ~ (t/h) Y ik’ (20)
i=0

wherek = n — ng. In the one-dimensional case, (11) becomes

[E(n) — Em)]t/h =O@m+n)(n —m) (mod 2r). (21)
This condition requires tha (m +n)(mod 2r) be an effectively linear function ek + n (see
the appendix):

[E(m) — Em)]t/h =[O0+ B(m +n)](n —m) (mod 2r). (22)
The condition (12) demands that= 2x//M with [, M being integers. Putting this into (21)

and lettingm = ng, we obtain the condition for equal partial revivals in the one-dimensional
case,

[E) ~ E@o)lt /B =000 — o) + 22— no)® (mod 20) 23

wherefy = ®¢ + 2npf is an arbitrary real number.
From (20) and (23), the times of partial revivals can be worked out in a similar way to that
used in [1]. To this end, we rewritg; (n) — E (ng) of (20) as

A i—-1
Ey(n) — E(no) =Y _& [ Jtk—j) (24)
i=1 =0
wherek = n — ng and¢; is linear combination of;, . . ., wy,

A
L=y Euw (25)
=i
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where the coefficient;;} are positive integers arfgg = 1. Putting (24) into (23), it becomes

. i _ 2nl _ 27l
Z;,»t/h H(k — )+ (gzt/h - %) k(k — 1) + (glt/h — 60— 7) k=0 (mod 27).

i=3 j=0

(26)
Thus the conditions for equal partial revivals become
A
(t/h)i! Y &y =0 (mod 2r) (i=3....%) (27)
=i
A
(t/M)2!Y &y =0 (mod 2r/M). (28)

=2
Solutions of (27) and (28) can be obtained in a recursive way. Without loss of generality,
the timesr /i = 1, of partial revivals can be expressed as

=1%+...+¢® (29)

with 7@ > (=D namelyr™ is the main part ot,, andr*~? is the first-order amendment
to t™®, t*=2 js the second-order amendment, and so on.

Note that the case of= A in (27) contains onlyy;, and the case af= 1 — 1 contains
only w;_1 andw;, and so on. From the property that > w;.+1, we letr™ be the solution of
the case of = A, it can be expressed as

p k2
Al oy
Here the integek, must satisfyk;, T, < Ti+1. The first-order amendment*~? is obtained

from the requirement that*—? + t® is the solution of (27) for the case bf= A — 1, thus
we have

(30)

‘L'()Lil) _ kk—l 21 _ 1

A =D&l =D
Here 0< mod(x, y) < y is the remainder of /y, the integek; _1 must satisfieg;, 17)_1 <
T,.. From the fact that,_1 &~ w;_1, or t*~ 1 is within the scale of;_1, thust =P + ™ also
satisfies (27) with = A sincew, t*~Y is negligibly small. Similarly,z/’ is obtained from
the requirement that) + . .. + ™ being the solution of (27) for the case= j:

-modt ™ — D|¢y_4|, 27]. (31)

: , 1 :
) =2 = mod[jlg (Y + e+ 7)), 2n]. (32)
JUIG gl

Here the requirement”) « tU*? demands that the integgy satisfiesc; T; <« Tj+1. Note
that¢; ~ w;, orhit¥) ~ T;, thust"/) is a small perturbation tor V*Y + ... + t™®) which is
the solution for the cases= j + 1,..., A. This means that’ + ... + ™ js the solution
of (27) for the cases af= j, ..., A.

Finally, ® is obtained from the requirementof = t® + ... + t® being the solution
of (28):

%) kz 21

1
—2. "~ mod2! G 4.+ Wy 27/ M]. 33
2 MG gy el 2/ ¢

Here the integek, satisfiesk,T» <« T3. Similar arguments show that is also the solution
of (27) for the cases=3, ..., A.

WhenM = 1, the partial revival times expressed in (29)—(33) become the full revival
times similarly to the case in [1].
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The first partial revival occurs at the time scale T». In this time scale, the times when
the initial wavepacket becomeég small wavepackets are

_ kz 2
T 2IM |ws|”

Herek, andM has no common factor. In the next time scate 73, {3 = w3, { = wy + 3ws,
the partial revivals happen & = @ + @ with

T2 (34)

k3 2
Q) > =
TP .
and from (33)
k 2
@ " T mod[2'r ®|w, + 3ws|, 27/M].  (36)

T 2IM |wp + 3ws|  2!|wp + 3ws]

Partial revivals described by (29)—(33) are ‘equal’ ones, i.e. the initial wavepacket breaks
into several equal parts. This is evident from equations (22) and (23). The action-angle Wigner
function recovers its initial form in every torus, and nearby tori move against each other by
27 /M in the angle direction, wher# is the number of small wavepackets. Thus the density
distribution on torug, ! + M, 1 +2M, ... (I = 1,2, ...) forms a small wavepacket. The
small wavepackets are equally distributed along the invariant tori.

4. An example: partial revivals in the JC model

To illustrate the above discussions, we analyse partial revivals in the JC model [26]. This
model describes a two-level atom interacting with a single mode of quantized radiation field.
This solvable quantum system exhibits many fascinating quantum effects that can be tested
experimentally [27,28], including partial revivals of initially coherent field states, also referred
as emerging of Scbdinger cat states [29,30]. Here we consider a simple form of the JC model
with the Hamiltonian
1
H =hwa"a+ Z eilei)(ei| + g(aler)(eo| +a"|eo)(ea]) (37)
i=0
whereleg) and|e;) are the ground and excited states of the two-level atom respectagely;
ande; are the two corresponding eigenenergi€sanda are the creation and annihilation
operators of the field with commutation relatian, §*] = 1 and the real numbeg is the
coupling parameter. This integrable system has analytic solutions. The spectrum can be
expressed as a function of two quantum numbers

E(n,s) =hon+eg+ A+ (2s —Dgy/n+(A/g)? (38)

wheres = 0orl,n =0,1,2,...,andA = (e1 — eg — hw)/2 is the detuning factor. The
corresponding eigenstates can be written as

¢ (n, 5)) = COLyn,s)In, €0) + SiN(yy,5)|n — 1, e1) (39)

wherey, 1 = y.0+t7/2; |n, e;) = |n) ® |e;), and|n) is the eigenvector of the number operator
a*a, a*aln) = n|n). For a large detuning factak > 1, one can show that, o ~ 0, thus
|n, ;) is approximately the eigenfunction of the Hamiltonian.

Since the quantum numberhas only two possible values 0 and 1, a wavefunction in
eigenbasig¢ (n, s)} can be divided into two branches according to the quantum number

W (1)) = [Wo(r)) + [W1(1)) (40)
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where

(W (0)) =Y Y s (DI, 5)) (s=0,1. (41)

In this way, the evolution of the two-dimensional density operaioy = |¥(7))(¥(¢)| can
be treated as independent evolutions of four one-dimensional density operators
P(t) = poo(t) + por(t) + pro(t) + p11() (42)

wherep;; (1) = |¥;(1))(¥; (r)] depends only on one quantum numbeNote that2 -1 = +1,
the nonlinear part of the spectruBi(n, s) in (38) is the same./n + (A /g)? for differents.
Thus the four density operatofg;;(r)} have same full or partial revival periods. But the
central points where the initial wavepacket revives or partially revives, which depend on the
linear terms of the spectrum, are different. This means that at partial revival times when each
one-dimensional wavepacket becom¢small wavepackets, there ar&f4small wavepackets
in the phase space distribution.

For an initial wavepacket centred sy, if fo = /no+ (A/g)2 > 1, the coefficients of
the energy spectrum’s Taylor expansion satisfy condition (19). This can be achieved by either
choosing a large detuning factar, or preparing the initial wavepacket with a large mean
photon number. Applying (29)—(36), we obtain the partial revival times for the JC model: In
the time scale ~ T, the initial wavepacket becom@$ small wavepackets at times

ko 4 f3
To(ka, M) = MZJ (43)
In the time scale ~ T3, the M small wavepackets appear at times
ks8mfY Kk 8 [ 412 4k f2 2
t3(ka, ka, M) = — o , ke 7T2f0 — JZCO mod[ /o , —ni| ) (44)
9 ¢ Mg2f5-3 g2f5—-3 9 M

Hereks, k3 are integers ank, has no common divisor withf. ForM = 1, (43) and (44) are
the full revival times in these time scales.

The numerical calculation is performed for a large detuning case with the initial state
chosen as a coherent field state and the atom in the ground state,

[¥(0)) = Iq0. Po) ® leo) (45)

where|qo, po) = exp(zoa™ — z§a)|0) with the complex numbety = (g0 +ipo)/~/ 2k, and|0)
being the vacuum field state. Figures 1 and 2 show the Husimi distributions of the reduced
density operator that is traced over atomic space,

ou(q, p) = (g, plp" ®)lq, p) (46)
where
1
AL = leslp)ley). (47)
s=0

The Husimi distribution of the density operatoft) can be viewed as a superposition of four
Husimi distributions ofp;; (r) (i, j = 0, 1). But for the initial state (45), the contributions of
001(1), p10(2), andp11(¢) are very small in large detuning case. Thus the initial wavepacket
(figure 1@)) is virtually contributed bypgo(z), and the evolution can be treated as a one-
dimensional case. The parameters for the system are choggn=a8, e; = 1, » = 100,

g = 1, and the effective Planck constant is set to 1 (arbitrary units). This is a highly
detuned case with detuning factar= 49.5. With this setting, the first three time scales are
Ty = 624189,T, = 6.160 13x 10° and 75 = 3.039 71x 10'°.
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Figure 1. Contour plots of Husimi distribution of a Figure 2. Contour plots of the Husimi distribution
wavepacket atg) initial time r = 0, (b) r+ = 153566~ of the wavepacket in long time scales) ¢t =
172/20, €)1 = 615513~ 15/3, (d)r = 615513~ 15/5. The 5.0773x 10° ~ 13(2, 1, 3), (b) r = 5.067 32x 10° ~
central point of the Gausian wavepacket is initially located atz(2, 1, 5), (c) r = 5.06979x 10° ~ 13(2, 1, 1),
qo0 = 3, po = 5, and the effective Planck constant is set tavherers is defined in (44).

h = 1, (arbitrary units). The parameters for the Hamiltonian

are as follows:ep = 0,¢1 = 1, ® = 100,¢ = 1, (arbitrary

units). This is a highly detuned case.

In a short time scale « T, the second- or higher-order terms of the spectrum’s Taylor
expansion can be neglected in the phase dhift, s)7 /A, i.e. it is approximately a linear
function of the quantum number, thus the evolution of the Husimi distribution @§o(r)
is similar to a classical particle moving along a classical orbit. It is easy to show that the
frequency of classical motion of the wavepackétig = | — g//no + (A /g)?|, namely the
wavepacket returns to its initial position after a periad= 27 /|w|.

This kind of classical behaviour can only last for a short period of time. As time increases,
the nonlinear terms of the spectrum take effect gradually in the phaseshift)z /i, which
causes the wavepacket to spread along the invariant tori of the phase space. The motion of
the wavepacket in this period is an interplay between classical overall shift and spread of the
wavepacket (figure bj). The process continues until the wavepacket spreads over all possible
tori.

In the time scale ~ T, the density distribution 0y resumes regular form at the time
t = 1o(ko, M) Of (43): the original density distribution becom#s small wavepackets, and
they move along the classical orbits in a way similar to their initial distribution. Figu@s 1(
and @) show the Husimi distributions when the wavepacket becavfies 3 andM = 5 small
wavepackets respectively. This kind of behaviour repeats-at,(k,, M) for each integek,

(k2 has no common divisor with/).
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In fact, within this time scale, the evolution of the action-angle Wigner function can be
expressed in the same form as that of the classical Liouville density [20]:

F,n/2;t) = F(6 — (w1 + won)t, n; 0). (48)

In this way, the evolution ofF (9, n/2;t) can be viewed as a result of each phase space
point moving along a classical orbit. Since phase space points within an invariant torus have
same angular velocity, the shapefof, n/2; t) within each individual torus does not change
during time evolution. Thus the action-angle Wigner function in this time scale only changes
the central point ofF (6, n/2; t) within each torus of the phase space, and nearby tori move
against each other with a constant angular veloejty At time ¢t = 7/(Mw,), the central
points of nearby tori move against each otherpys. Taking into account the symmetry of

the action-angle Wigner function

FO,n/2;t) = (~1)"F@ +m,n/2 1) (49)

one seesthatan initial wavepacket now becomggsoups equally spaced inthe angle direction.
The shape of each group like a small wavepacket.

This process can also be described in terms of the Husimi distribution by decomposing
the initial Husimi function into a superposition of small components [2]. Each component is
the Husimi functions of the density operators

/51-(;\]) = Z [0,i ) (Dn,i 10i OV PN, i) {PN—n,jl. (50)

From (4), one sees that the Husimi distribution&,“jﬁ) is similar to a small wavepacket with
same symmetry as (49). Similar to (48), one can show that the evolution of a small component
is like a phase space point: the central point of the component moves along a classical orbit
and the shape does not change in the time scald». Thus the partial revivals occur when
nearby components move against each other by .

The small components begin to spread when the third-order term of the spectrum’s Taylor
expansion takes effect on the phase shift, s)¢/h. This makes the full and partial revivals
disappear gradually at times= ko7 /w, ~ T3. But at times near = %w% with k3 being
integer, all the components recover their initial forms. The phase Ehifts): /i near these
times can be equivalently treated as a quadratic function of the quantum nunitie overall
effect of the evolution is equivalent to that of each component moving along a classical orbit.
Thus the full and partial revivals near these times can be treated in the same way as in the
time scaler ~ T,. Figures 28) and @) show the partial revivals in this time scale, which
are one-to-one correspondent to figures 1(c) adKigure 2€) shows the full revival of the
wavepacket in this time scale. The behaviour of the wavepacket in other time scales can be
analysed in the same way.

Full and partial revivals can also be exhibited by expectation values of observables or
by the autocorrelation functio® (1) = |(¥(0)|¥(¢))|?, as shown in figure 3. In the short
time scale ~ T; = 27 /ws, the classical motion of the wavepacket corresponds to the Rabi
oscillations, which collapse when time reaches the time s€alét times of partial revivals,
the amplitude of oscillation increases tpM of the initial amplitude while the frequency of
oscillation increases t#f times of the initial value. This is a result of the fact that there are
M small wavepackets passing through the initial point at times of partial revivals.

5. Conclusions

In summary, by means of the action-angle Wigner function, we have predicted a kind of equal
partial revivals of wavepackets in various time scales. The basic idea is to decompose the
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(@)

P(t)

P(t)
o
»

Figure 3. Autocorrelation function versus
time. The initial time is set as] 1o = 0,
0 400 800 1200 1600 (b) 10 = 5.06979x _109 which is the full

revival time in the time scale ~ T3 as
(t-10)/T4 shown in figure ().

density operator into a superposition of small components. Each small component behaves
like a small wavepacket. In the action-angle phase space, a component is only distributed
within one invariant torus, and never mixes with other components during evolution. The
equal partial revivals occur when all small components recover their initial form, and their
central points are equally spaced along the invariant tori of the phase space. We have obtained
analytic expressions for one-dimensional cases. Our results show that, within a tim&scale
near each full revival, there are such kind of equal partial revivals.
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Appendix

In this appendix, we give a simple proof of the theorem: If areal fundtior) can be expressed
as

Fn)— F(m)= f(n+m)(n —m) (mod 2r) (A1)
for all possible integers andm, then f (n) must be a ‘linear’ function of integer:
f(n) =an+a (modsm) (A.2)

whereqa, A are two constants, and = 1 (for even numben) or 2 (for odd numbem).
Thus (A.1) becomes

F(n) — F(m) =[An+m)+a]l(n —m) (mod 2r). (A.3)
Proof. Leta andb(# a) be two fixed integers andbe an integer that keegs+b+x) /2 being

an integer. Froma, b, andx we construct three integerd: = (a—b+x)/2,B = (a+b—x)/2,
C=(—a+b+x)/2,thusa =A+B,b=B+C,x =C+A. From (A.1), we have

F(B) — F(A) = f(a)(b—x) (mod 2r) (A.4)
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F(C)— F(B) = f(b)(x —a) (mod 2r) (A.5)

F(C)—F(A) = f(x)(b—a) (mod 2r). (A.6)
Using (A.4) and (A.5)-(A.6), we obtain

f)(®b—a)= fa)b—x)+ f(b)(x —a) (mod 2r). (A7)
For odd numbex, puttinga = ng (no is an even number) arid)= ng + 1 into (A.7), we have

f(x) = f(no)(no+1—x)+ f(no+1(x —no) (mod 2r). (A.8)
For even numbet, puttinga = ng + 1 andb = ng + 3 into (A.7), we have
2f(x) = f(no+D(no+3—x) + f(no+3)(x —ng—1) (mod 2r). (A.9)
From (A.8), f (ng + 3) can be written as

f(no+3) =—=2f(no) +3f(no+1) (mod 2r). (A.10)
Thus (A.9) becomes

2f(x) = 2f (no)(no+1— x) + 2f (no + D(x —ng) (mod 2r) (A.11)
or

f(x) = f(no)(no+1—x)+ f(no+1)(x —no) (mod 2r). (A.12)

From (A.8) and (A.12), we obtain (A.2), where = [f(no + 1) — f(ng)] and ¢ =
(no+ 1) f(no) — nof(no+ 1) are two constants.

Putting (A.2) into (A.1), we obtain (A.3) by noting thatrif+ m is an even numben, — m
is also an even number, thus — m)kmr = O(mod 27) for any integek. O
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