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Abstract. In terms of the action-angle Wigner function, we analyse the effects of energy spectrum
anharmonicity on the evolutions of wavepackets in long time scales. The formulation shows a close
connection between classical periodic motions of phase space points and the quantum (full and
partial) revivals of wavepackets. This enables us to find the conditions of (full and partial) revivals
in an intuitive way. For one-dimensional cases, we obtain analytic solutions for times of equal
partial revivals, i.e. an initial wavepacket splits equally into several small parts in long time scales.
Numerical results for the JC model confirm the theoretical predictions.

1. Introduction

Temporal behaviour of an initially prepared wavepacket have been extensively investigated
both experimentally and theoretically [1–8]. These studies substantially deepen our insight
into the fundamental problem of transition from quantum to classical mechanics [9,10]. Recent
experimental advances in quantum optics and atomic physics [11–16] add new interest to this
problem. For example, by ultrashort laser pulse, one can generate and monitor highly localized
atomic Rydberg wavepackets which are a coherent superposition of highly excited states. This
provides valuable information about structures of atoms. On the other hand, in cavity quantum
electrodynamic (QED) experiments, an electromagnetic field is usually in wavepacket form,
namely a field-coherent state. In high-Q cavities, one is able to study the long-time behaviour
of a single mode of field wavepacket interacting with one atom, which is a powerful way to
explore and test the fundamental model of field–atom interaction.

During evolution, a wavepacket often resumes its initial form repeatedly. In a short time
scale, a wavepacket generally exhibits an overall motion along a classical orbit of phase space
while its shape becomes deformed. This behaviour is similar to the corresponding classical
Liouville density. This classical behaviour, however, stops when the discreteness of the energy
spectrum takes into effect. Then quantum behaviour substantially deviates from its classical
counterpart. In fact, there is only a finite number of frequencies{ωi} effectively involved in the
quantum motion. When every involved frequency’s phase shiftωit becomes approximately
the same (in the sense of mod 2π ) with each other at timet , the initial wavepacket revives.
This kind of behaviour is a general property of bounded quantum systems. It is pronounced
in semiclassical regions, where the involved energy spectrum is almost equally spaced.

Between two consecutive full revivals, there are partial revivals. In terms of phase space
distribution functions, such as the Wigner function [17,18] or Husimi function [19], the initial
wavepacket breaks into several small regular forms. Generally speaking, full and partial
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revivals of wavepackets are the result of anharmonicity of the involved frequencies. In time
scales when only the first order of the anharmonic term takes effect, i.e. the phase shifts caused
by high-order anharmonic terms are negligibly small, the behaviour of full and partial revivals
are simple [2,20]. The time interval between two consecutive full revivals is a constant. And at
a fraction of the interval, the initial wavepacket breaks equally into several small wavepackets,
which are equally spaced along the invariant tori.

When higher orders of anharmonicity take effect in longer time scales, a wavepacket has
more complicated forms of (full or partial) revivals. One needs more sophisticated skills,
as shown in [1], to find out the relations between full revival times and higher orders of
anharmonicity. Under the influence of high-order anharmonicity, the initial wavepacket may
become several unequal parts at times of partial revivals, which usually locate irregularly along
the invariant tori [4].

To investigate the effects of high-order anharmonicity on the behaviour of wavepackets,
we employ the Wigner function in terms of action-angle variables. This discrete phase space
representation exhibits an intuitive relation with the corresponding classical Liouville density,
and manifests naturally the conditions of full and partial revivals. In section 2 we show that,
in terms of the action-angle Wigner function, quantum density is distributed in some discrete
tori. Thus, there are partial revivals when the distribution on each individual torus recovers its
initial form, and its central point moves to one of several possible angles. In this formulation,
full revivals are special cases of partial revivals. In section 3, we obtain analytical expressions
of such partial revival times for one dimensional cases. Application to the Jaynes–Cummings
(JC) model is discussed in section 4. Numerical results for large detuning cases confirm with
theoretical prediction. Conclusions and some comments are presented in section 5.

2. Conditions of partial revivals of wavepackets in terms of action-angle Wigner
function

For a classical integrable system withk degrees of freedom, there existk constants of motion
I = (I1, . . . , Ik) that can serve as canonical momenta, namely the action variables. Each action
variableI corresponds to an invariant torus. The conjugate coordinates of the action variables,
i.e. the angle variablesθ = (θ1, . . . , θk), label positions on the invariant torus. Many properties
of an integrable system have analytical forms in terms of action-angle variables. For example,
evolution of the Liouville density can be simply written asρL(I, θ, t) = ρL(I, θ−ω(I )t, 0),
whereω(I ) = (ω1(I ), . . . , ωk(I )) is the frequency of the torus associated with the actionI,
ωi(I ) = ∂

∂I i
H(I) with H(I) being the Hamiltonian.

Correspondingly, the quantum counterpart of the above system hask good quantum
numbersn = (n1, . . . , nk). The eigenenergies and their corresponding eigenstates are
functions of the good quantum numbers,H |φn〉 = E(n)|φn〉, whereH is the Hamiltonian.
In semiclassical regions, the quantum numbers have relations to classical action variables in
the sense of EBK quantization [21],Ii = αi + h̄ni , whereαi is a constant.

From this observation, we define the action-angle Wigner function as follows:

F(θ,n/2; t) = 1

2π

∑
n′

e−in′·θ〈9(t)|φ(n+n′)/2〉〈φ(n−n′)/2|9(t)〉 (1)

wheren′ · θ = n′1θ1 + · · · + n′kθk, ni andn′i are integers; the summation is over all possible
integers{n1, n2, . . .}, and if one of(ni ± n′i )/2 is half-integer, we define|φ(n±n′)/2〉 = 0. For
the case of harmonic oscillator, the action-angle Wigner function is also referred to as the
number-phase Wigner function. Many authors employ it [22–24] to investigate the quantum
phase problem [25].
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F(θ,n/2; t) has similar properties as the usual Wigner function: (i) It contains all
information of the density operator, i.e. the density operator can be reconstructed from the
action-angle Wigner function

ρ̂(t) =
∑
n

∫ 2π

0
F(θ,n/2; t)Â(θ,n/2) dθ (2)

where

Â(θ,n/2) =
∑
n′

e−in′·θ|φ(n+n′)/2〉〈φ(n−n′)/2|. (3)

Using Â(θ,n/2), the action-angle Wigner function can be expressed asF(θ,n/2; t) =
1

2π tr(ρ̂(t)Â(θ,n/2)). (ii) Integration ofF(θ,n/2; t) over θ results in the probability of
the wavefunction located at state|φn/2〉 if n/2 is an integer vector, i.e. all of its components,
n1, n2, . . . , are even-integer. However, if one ofni/2 is half-integer, the integration vanishes.
(iii) In the classical limit, the equation of motion off (θ, I; t) = f (θ, α + h̄n/2; t) =
F(θ,n/2; t) becomes the Liouville equation in terms of action-angle variables. (iv) In
semiclassical regions, the expansion coefficients of a wavepacket,9n(0) = 〈φn|9(0)〉, is
effectively non-zero only in a narrow region roundn0. In this narrow region, the phase of
9n(0) can be approximated by its Taylor expansion up to the first order, i.e. a linear function
of the quantum numbers [2]. Thus the density of the wavepacket has the form

ρ̂(0) ≈
∑
m,n

fmfneiδ(n0)·(m−n)|φm〉〈φn| (4)

where fn = |9n(0)|, 9n(0) = fnei2(n), and δi(n) = ∂
∂ni
2(n). From the Fourier

transformation theory one sees that, in the action-angle phase space, the action-angle Wigner
function of a wavepacket is centred at(δ(n0),n0), wheren0 is the central point offn (fn has
maximum value atn0). (v) From (2), one can transform the action-angle Wigner function into
other kinds of density distribution functions. For example, one obtains the Husimi function
from the action-angle Wigner function by a smoothing procedure, and the smooth function is
the action-angle Wigner function of the Gaussian wavepacketFq,p(θ,n),

ρH (q,p) = 2π
∑
n

∫ 2π

0
F(θ,n)Fq,p(θ,n) dθ. (5)

Here(q,p) is the central point of the Gaussian wavepacket. From the above properties and
noting thatF(θ,n/2; t) can be negative, we interpretF(θ,n/2; t) as quasi-probability of the
wavefunction located at phase space point(θ,n/2) for all integers{n1, n2, . . .}.

The action-angle Wigner function has two special properties. Firstly, it is periodic in the
angle variablesF(θ,n; t) = F(θ + 2π,n; t); and secondly, it is distributed on discrete tori
of the action-angle phase space. These two properties play important roles in our following
discussions of (full and partial) revivals of wavepackets.

If the action-angle Wigner function of a density operator is initially distributed on one
torus, i.e. it vanishes on other tori, then it will remain on this torus during the evolution. In
fact, the density operator of an initial wavepacket is a linear combination of small components,
and each component is only distributed on one torus:

ρ̂(t) =
∑
n

ρ̂n(t) (6)

where

ρ̂n(t) =
∑

n1+n2=2n

〈φn1|ρ̂(t)|φn2〉|φn1〉〈φn2|. (7)
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Accordingly, the Wigner function can also be decomposed as

F(θ,n; t) =
∑
m

Fm(θ,n; t) (8)

where

Fm(θ,n; t) = 1

2π
tr(ρ̂m(t)Â(θ,n)). (9)

Fm(θ,n; t) = δm,nFn(θ,n; t) is only distributed on the torus associated with the quantum
numbern. It is easy to see that evolution of the componentFn(θ,n; t) is restricted within its
own torus.

The initial wavepacket revives (resumes it original form) at timet = τ if and only
if each component resumes its initial form at a same angleΘ(τ ), i.e. Fn(θ,n; τ) =
Fn(θ − Θ(τ ),n; 0) with 2(τ) independent ofn. There are times when everyFn(θ,n; t)
resumes its original shape, but their central angle points are located at different positions,

Fn(θ,n; τ) = Fn(θ −Θ(n),n; 0) (10)

whereΘ(n) assumes one of several possible values. At these times, the original wavepacket
becomes several small wavepackets, namely partial revivals of the initial wavepacket.

Since 〈φn|9(t)〉 = exp(−iE(n)t/h̄)〈φn|9(0)〉, according to (7)–(9), equation (10)
means that the partial revivals can occur at times when

[E((n +n′)/2)− E((n− n′)/2)]t/h̄ = Θ(n/2) · n′ (mod 2π) (11)

and

Θ(n/2) · n′ (mod 2π) ∈ {Θ1, . . . ,ΘM} (12)

whereM is the number of small wavepackets that appear in the phase space. IfM = 1, i.e.
Θ(n/2) is independent ofn, (11) becomes the condition for full revivals of wavepackets,
which is equivalent to that of [1].

According to our following discussions, equations (11) and (12) only predict ‘equal’ partial
revivals, i.e. the initial wavepacket breaks equally into several small parts. However, we can
obtain general conditions of partial revivals in the same way. To this end, we decompose a
initial density operator as

ρ̂ = 1
2

∑
m,n

ρ̂mn (13)

whereρ̂mn = |φm〉〈φm|ρ̂|φn〉〈φn| + |φn〉〈φn|ρ̂|φm〉〈φm|. The action-angle Wigner function
of ρ̂mn is initially a cosine form,

ρmn(θ, l, 0) = Amn cos[(m− n)(θ − θ0)]δl,(m+n)/2. (14)

It is distributed only on the invariant torus associated with the quantum numberm + n, and
evolves in a way like a travelling wave,

ρmn(θ, l, t) = Amn cos[(m− n)(θ − ωmnt − θ0)]δl,(m+n)/2 (15)

whereωmn · (n −m) = [E(n) − E(m)]/h̄. When all the phase shiftsωmnt become the
same angle(mod 2π), the initial wavepacket revives. Partial revivals occur at times when the
phase shiftsωmnt have several possible angles(mod 2π). i.e.

[E(n)− E(m)]t/h̄ = Θ(n,m) · (n−m) (mod 2π) (16)

whereΘ(n,m) · (n − m)(mod 2π) has several possible values. The ‘travelling waves’
ρmn(θ, l, t) with the same phase shift form a small wavepacket. However, many of such
partial revivals are ‘unequal’ ones, i.e. the initial wavepacket breaks into several unequal parts.
From this general condition, one sees that at a fractional time of full revivals(m/M)T , there
is a partial revival [4], wherem < M are two integers, andT is the full revival time.



Equal partial revivals of wavepackets in long time scales 2517

3. ‘Equal’ partial revivals for the one-dimensional case

The conditions of equal partial revivals (11) and (12) have analytic solutions in one-dimensional
cases. Here only one single quantum number is involved to expand the initial wavepacket in
the eigenbasis of the Hamiltonian

|9(0)〉 ≈
nmax∑
n=nmin

ψn(0)|φn〉 (17)

where the expansion coefficients of the wavepacket are effectively non-zero only in the region
nmin < n < nmax. In this region, we assume that the spectrumE(n) is approximately a
quadratic function of the quantum numbern, i.e. the coefficients of the Taylor expansion of
E(n) decrease rapidly for third and higher orders. Thus the spectrum can be expressed as

E(n) =
∞∑
i=0

ωi(n− n0)
i (18)

with {ωi} satisfying

|ω2| � |ω3| � · · · � |ωm| � |ωm+1| � · · · . (19)

Heren0 is the central point of the initial wavepacket in the eigenbasis,|ψn0| > |ψn|, and
ωi = 1

i!
∂(i)

∂xi
E(x)|x=n0, ω0 = E(n0). In semiclassical regions, the effective Planck constant ¯h

is a small quantity, ¯h � 1, andωi ≈ h̄i 1
i!
∂(i)

∂I i
E(I )|I=I0, with I being the action variable and

I0 = α + h̄n0. Thus, equation (19) is usually satisfied in the semiclassical region.
LetTi = 2π/|ωi |, thus{Ti} form a cascade of time scalesT2� T3� · · ·. At a time scale

(t/h̄) < Tλ, the higher-order termsωλ+1(n− n0)
λ+1, . . . , can be neglected in the phase shifts

δλ = E(n)t/h̄,

δλ(k) = (t/h̄)Eλ(n) ≈ (t/h̄)
λ∑
i=0

ωik
i (20)

wherek = n− n0. In the one-dimensional case, (11) becomes

[E(n)− E(m)]t/h̄ = 2(m + n)(n−m) (mod 2π). (21)

This condition requires that2(m +n)(mod 2π) be an effectively linear function ofm +n (see
the appendix):

[E(n)− E(m)]t/h̄ = [20 + β(m + n)](n−m) (mod 2π). (22)

The condition (12) demands thatβ = 2πl/M with l,M being integers. Putting this into (21)
and lettingm = n0, we obtain the condition for equal partial revivals in the one-dimensional
case,

[E(n)− E(n0)]t/h̄ = θ0(n− n0) +
2πl

M
(n− n0)

2 (mod 2π) (23)

whereθ0 = 20 + 2n0β is an arbitrary real number.
From (20) and (23), the times of partial revivals can be worked out in a similar way to that

used in [1]. To this end, we rewriteEλ(n)− E(n0) of (20) as

Eλ(n)− E(n0) =
λ∑
i=1

ζi

i−1∏
j=0

(k − j) (24)

wherek = n− n0 andζi is linear combination ofωi, . . . , ωλ,

ζi =
λ∑
l=i
ξilωl (25)
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where the coefficients{ξil} are positive integers andξii = 1. Putting (24) into (23), it becomes

λ∑
i=3

ζi t/h̄

i−1∏
j=0

(k − j) +

(
ζ2t/h̄− 2πl

M

)
k(k − 1) +

(
ζ1t/h̄− θ0 − 2πl

M

)
k = 0 (mod 2π).

(26)

Thus the conditions for equal partial revivals become

(t/h̄)i!
λ∑
l=i
ξilωl = 0 (mod 2π) (i = 3, . . . , λ) (27)

(t/h̄)2!
λ∑
l=2

ξ2lωl = 0 (mod 2π/M). (28)

Solutions of (27) and (28) can be obtained in a recursive way. Without loss of generality,
the timest/h̄ = τλ of partial revivals can be expressed as

τλ = τ (2) + · · · + τ (λ) (29)

with τ (i) � τ (i−1), namelyτ (λ) is the main part ofτλ, andτ (λ−1) is the first-order amendment
to τ (λ), τ (λ−2) is the second-order amendment, and so on.

Note that the case ofi = λ in (27) contains onlyωλ, and the case ofi = λ − 1 contains
onlyωλ−1 andωλ, and so on. From the property thatωi � ωi+1, we letτ (λ) be the solution of
the case ofi = λ, it can be expressed as

τ (λ) = kλ

λ!

2π

|ωλ| . (30)

Here the integerkλ must satisfykλTλ � Tλ+1. The first-order amendmentτ (λ−1) is obtained
from the requirement thatτ (λ−1) + τ (λ) is the solution of (27) for the case ofi = λ − 1, thus
we have

τ (λ−1) = kλ−1

(λ− 1)!

2π

|ζλ−1| −
1

(λ− 1)!|ζλ−1| ·mod[τ (λ)(λ− 1)!|ζλ−1|, 2π ]. (31)

Here 0< mod(x, y) < y is the remainder ofx/y, the integerkλ−1 must satisfieskλ−1Tλ−1�
Tλ. From the fact thatζλ−1 ≈ ωλ−1, or τ (λ−1) is within the scale ofTλ−1, thusτ (λ−1) + τ (λ) also
satisfies (27) withi = λ sinceωλτ (λ−1) is negligibly small. Similarly,τ (j) is obtained from
the requirement thatτ (j) + · · · + τ (λ) being the solution of (27) for the casei = j :

τ (j) = kj

j !

2π

|ζj | −
1

j !|ζj | ·mod[j !|ζj |(τ (j+1) + · · · + τ (λ)), 2π ]. (32)

Here the requirementτ (j) � τ (j+1) demands that the integerkj satisfieskjTj � Tj+1. Note
thatζj ≈ ωj , or h̄τ (j) ∼ Tj , thusτ (j) is a small perturbation to(τ (j+1) + · · · + τ (λ)) which is
the solution for the casesi = j + 1, . . . , λ. This means thatτ (j) + · · · + τ (λ) is the solution
of (27) for the cases ofi = j, . . . , λ.

Finally, τ (2) is obtained from the requirement ofτλ = τ (2) + · · · + τ (λ) being the solution
of (28):

τ (2) = k2

2!

2π

M|ζ2| −
1

2!|ζ2| ·mod[2!|ζ2|(τ (3) + · · · + τ (λ)), 2π/M]. (33)

Here the integerk2 satisfiesk2T2 � T3. Similar arguments show thatτλ is also the solution
of (27) for the casesi = 3, . . . , λ.

WhenM = 1, the partial revival times expressed in (29)–(33) become the full revival
times similarly to the case in [1].
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The first partial revival occurs at the time scalet ∼ T2. In this time scale, the times when
the initial wavepacket becomesM small wavepackets are

τ2 = k2

2!M

2π

|ω2| . (34)

Herek2 andM has no common factor. In the next time scalet ∼ T3, ζ3 = ω3, ζ2 = ω2 + 3ω3,
the partial revivals happen atτ3 = τ (2) + τ (3) with

τ (3) = k3

3!

2π

|ω3| (35)

and from (33)

τ (2) = k2

2!M

2π

|ω2 + 3ω3| −
1

2!|ω2 + 3ω3|mod[2!τ (3)|ω2 + 3ω3|, 2π/M]. (36)

Partial revivals described by (29)–(33) are ‘equal’ ones, i.e. the initial wavepacket breaks
into several equal parts. This is evident from equations (22) and (23). The action-angle Wigner
function recovers its initial form in every torus, and nearby tori move against each other by
2π/M in the angle direction, whereM is the number of small wavepackets. Thus the density
distribution on torusl, l +M, l + 2M, . . . (l = 1, 2, . . .) forms a small wavepacket. TheM
small wavepackets are equally distributed along the invariant tori.

4. An example: partial revivals in the JC model

To illustrate the above discussions, we analyse partial revivals in the JC model [26]. This
model describes a two-level atom interacting with a single mode of quantized radiation field.
This solvable quantum system exhibits many fascinating quantum effects that can be tested
experimentally [27,28], including partial revivals of initially coherent field states, also referred
as emerging of Schrödinger cat states [29,30]. Here we consider a simple form of the JC model
with the Hamiltonian

H = h̄ωa+a +
1∑
i=0

ei |ei〉〈ei | + g(a|e1〉〈e0| + a+|e0〉〈e1|) (37)

where|e0〉 and |e1〉 are the ground and excited states of the two-level atom respectively;e0

ande1 are the two corresponding eigenenergies;a+ anda are the creation and annihilation
operators of the field with commutation relation [a, a+] = 1 and the real numberg is the
coupling parameter. This integrable system has analytic solutions. The spectrum can be
expressed as a function of two quantum numbers

E(n, s) = h̄ωn + e0 +1 + (2s − 1)g
√
n + (1/g)2 (38)

wheres = 0 or 1,n = 0, 1, 2, . . . , and1 = (e1 − e0 − h̄ω)/2 is the detuning factor. The
corresponding eigenstates can be written as

|φ(n, s)〉 = cos(γn,s)|n, e0〉 + sin(γn,s)|n− 1, e1〉 (39)

whereγn,1 = γn,0 +π/2; |n, ei〉 = |n〉⊗ |ei〉, and|n〉 is the eigenvector of the number operator
a+a, a+a|n〉 = n|n〉. For a large detuning factor1 � 1, one can show thatγn,0 ≈ 0, thus
|n, ei〉 is approximately the eigenfunction of the Hamiltonian.

Since the quantum numbers has only two possible values 0 and 1, a wavefunction in
eigenbasis{φ(n, s)} can be divided into two branches according to the quantum numbers:

|9(t)〉 = |90(t)〉 + |91(t)〉 (40)



2520 Q-L Jie and S-J Wang

where

|9s(t)〉 =
∑
n

ψn,s(t)|φ(n, s)〉 (s = 0, 1). (41)

In this way, the evolution of the two-dimensional density operatorρ̂(t) = |9(t)〉〈9(t)| can
be treated as independent evolutions of four one-dimensional density operators

ρ̂(t) = ρ̂00(t) + ρ̂01(t) + ρ̂10(t) + ρ̂11(t) (42)

whereρ̂ij (t) = |9i(t)〉〈9j(t)|depends only on one quantum numbern. Note that 2s−1= ±1,
the nonlinear part of the spectrumE(n, s) in (38) is the sameg

√
n + (1/g)2 for differents.

Thus the four density operators{ρ̂ij (t)} have same full or partial revival periods. But the
central points where the initial wavepacket revives or partially revives, which depend on the
linear terms of the spectrum, are different. This means that at partial revival times when each
one-dimensional wavepacket becomesM small wavepackets, there are 4M small wavepackets
in the phase space distribution.

For an initial wavepacket centred atn0, if f0 =
√
n0 + (1/g)2 � 1, the coefficients of

the energy spectrum’s Taylor expansion satisfy condition (19). This can be achieved by either
choosing a large detuning factor1, or preparing the initial wavepacket with a large mean
photon number. Applying (29)–(36), we obtain the partial revival times for the JC model: In
the time scalet ∼ T2, the initial wavepacket becomesM small wavepackets at times

τ2(k2,M) = k2

M

4πf 3
0

g
. (43)

In the time scalet ∼ T3, theM small wavepackets appear at times

τ3(k2, k3,M) = k3

9

8πf 5
0

g
+
k2

M

8πf 5
0

g(2f 2
0 − 3)

− 4f 5
0

g(2f 2
0 − 3)

mod

[
4k3πf

2
0

9
,

2π

M

]
. (44)

Herek2, k3 are integers andk2 has no common divisor withM. ForM = 1, (43) and (44) are
the full revival times in these time scales.

The numerical calculation is performed for a large detuning case with the initial state
chosen as a coherent field state and the atom in the ground state,

|9(0)〉 = |q0, p0〉 ⊗ |e0〉 (45)

where|q0, p0〉 = exp(z0a
+− z∗0a)|0〉 with the complex numberz0 = (q0 + ip0)/

√
2h̄, and|0〉

being the vacuum field state. Figures 1 and 2 show the Husimi distributions of the reduced
density operator that is traced over atomic space,

ρH (q, p) = 〈q, p|ρ̂(f )(t)|q, p〉 (46)

where

ρ̂(f )(t) =
1∑
s=0

〈es |ρ̂(t)|es〉. (47)

The Husimi distribution of the density operatorρ̂(t) can be viewed as a superposition of four
Husimi distributions ofρ̂ij (t) (i, j = 0, 1). But for the initial state (45), the contributions of
ρ̂01(t), ρ̂10(t), andρ̂11(t) are very small in large detuning case. Thus the initial wavepacket
(figure 1(a)) is virtually contributed byρ̂00(t), and the evolution can be treated as a one-
dimensional case. The parameters for the system are chosen ase0 = 0, e1 = 1, ω = 100,
g = 1, and the effective Planck ¯h constant is set to 1 (arbitrary units). This is a highly
detuned case with detuning factor1 = 49.5. With this setting, the first three time scales are
T1 = 624.189,T2 = 6.160 13× 106 andT3 = 3.039 71× 1010.
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Figure 1. Contour plots of Husimi distribution of a
wavepacket at (a) initial time t = 0, (b) t = 153 566≈
τ2/20, (c) t = 615 513≈ τ2/3, (d) t = 615 513≈ τ2/5. The
central point of the Gausian wavepacket is initially located at
q0 = 3, p0 = 5, and the effective Planck constant is set to
h̄ = 1, (arbitrary units). The parameters for the Hamiltonian
are as follows:e0 = 0, e1 = 1, ω = 100,g = 1, (arbitrary
units). This is a highly detuned case.

Figure 2. Contour plots of the Husimi distribution
of the wavepacket in long time scales, (a) t =
5.0773×109 ≈ τ3(2, 1, 3), (b) t = 5.067 32×109 ≈
τ3(2, 1, 5), (c) t = 5.069 79× 109 ≈ τ3(2, 1, 1),
whereτ3 is defined in (44).

In a short time scalet � T2, the second- or higher-order terms of the spectrum’s Taylor
expansion can be neglected in the phase shiftE(n, s)t/h̄, i.e. it is approximately a linear
function of the quantum numbern, thus the evolution of the Husimi distribution ofρ̂00(t)

is similar to a classical particle moving along a classical orbit. It is easy to show that the
frequency of classical motion of the wavepacket is|ω1| = |ω− g/

√
n0 + (1/g)2|, namely the

wavepacket returns to its initial position after a periodT1 = 2π/|ω1|.
This kind of classical behaviour can only last for a short period of time. As time increases,

the nonlinear terms of the spectrum take effect gradually in the phase shiftE(n, s)t/h̄, which
causes the wavepacket to spread along the invariant tori of the phase space. The motion of
the wavepacket in this period is an interplay between classical overall shift and spread of the
wavepacket (figure 1(b)). The process continues until the wavepacket spreads over all possible
tori.

In the time scalet ∼ T2, the density distribution of̂ρ00 resumes regular form at the time
t = τ2(k2,M) of (43): the original density distribution becomesM small wavepackets, and
they move along the classical orbits in a way similar to their initial distribution. Figures 1(c)
and (d) show the Husimi distributions when the wavepacket becomesM = 3 andM = 5 small
wavepackets respectively. This kind of behaviour repeats att = τ2(k2,M) for each integerk2

(k2 has no common divisor withM).
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In fact, within this time scale, the evolution of the action-angle Wigner function can be
expressed in the same form as that of the classical Liouville density [20]:

F(θ, n/2; t) = F(θ − (ω1 + ω2n)t, n; 0). (48)

In this way, the evolution ofF(θ, n/2; t) can be viewed as a result of each phase space
point moving along a classical orbit. Since phase space points within an invariant torus have
same angular velocity, the shape ofF(θ, n/2; t) within each individual torus does not change
during time evolution. Thus the action-angle Wigner function in this time scale only changes
the central point ofF(θ, n/2; t) within each torus of the phase space, and nearby tori move
against each other with a constant angular velocityω2. At time t = π/(Mω2), the central
points of nearby tori move against each other byπ/M. Taking into account the symmetry of
the action-angle Wigner function

F(θ, n/2; t) = (−1)nF (θ + π, n/2; t) (49)

one sees that an initial wavepacket now becomesM groups equally spaced in the angle direction.
The shape of each group like a small wavepacket.

This process can also be described in terms of the Husimi distribution by decomposing
the initial Husimi function into a superposition of small components [2]. Each component is
the Husimi functions of the density operators

ρ̂
(N)
ij =

∑
n

|φn,i〉〈φn,i |ρ̂ij (0)|φN−n,j 〉〈φN−n,j |. (50)

From (4), one sees that the Husimi distribution ofρ̂
(N)
ij is similar to a small wavepacket with

same symmetry as (49). Similar to (48), one can show that the evolution of a small component
is like a phase space point: the central point of the component moves along a classical orbit
and the shape does not change in the time scalet ∼ T2. Thus the partial revivals occur when
nearby components move against each other byπ/M.

The small components begin to spread when the third-order term of the spectrum’s Taylor
expansion takes effect on the phase shiftE(n, s)t/h̄. This makes the full and partial revivals
disappear gradually at timest = k2π/ω2 ∼ T3. But at times neart = k3

3!
2π
ω3

with k3 being
integer, all the components recover their initial forms. The phase shiftE(n, s)t/h̄ near these
times can be equivalently treated as a quadratic function of the quantum numbern. The overall
effect of the evolution is equivalent to that of each component moving along a classical orbit.
Thus the full and partial revivals near these times can be treated in the same way as in the
time scalet ∼ T2. Figures 2(a) and (b) show the partial revivals in this time scale, which
are one-to-one correspondent to figures 1(c) and (d). Figure 2(c) shows the full revival of the
wavepacket in this time scale. The behaviour of the wavepacket in other time scales can be
analysed in the same way.

Full and partial revivals can also be exhibited by expectation values of observables or
by the autocorrelation functionP(t) = |〈9(0)|9(t)〉|2, as shown in figure 3. In the short
time scalet ∼ T1 = 2π/ω1, the classical motion of the wavepacket corresponds to the Rabi
oscillations, which collapse when time reaches the time scaleT2. At times of partial revivals,
the amplitude of oscillation increases to 1/M of the initial amplitude while the frequency of
oscillation increases toM times of the initial value. This is a result of the fact that there are
M small wavepackets passing through the initial point at times of partial revivals.

5. Conclusions

In summary, by means of the action-angle Wigner function, we have predicted a kind of equal
partial revivals of wavepackets in various time scales. The basic idea is to decompose the
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Figure 3. Autocorrelation function versus
time. The initial time is set as (a) t0 = 0,
(b) t0 = 5.069 79× 109 which is the full
revival time in the time scalet ∼ T3 as
shown in figure 2(c).

density operator into a superposition of small components. Each small component behaves
like a small wavepacket. In the action-angle phase space, a component is only distributed
within one invariant torus, and never mixes with other components during evolution. The
equal partial revivals occur when all small components recover their initial form, and their
central points are equally spaced along the invariant tori of the phase space. We have obtained
analytic expressions for one-dimensional cases. Our results show that, within a time scaleT2

near each full revival, there are such kind of equal partial revivals.
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Appendix

In this appendix, we give a simple proof of the theorem: If a real functionF(n) can be expressed
as

F(n)− F(m) = f (n +m)(n−m) (mod 2π) (A.1)

for all possible integersn andm, thenf (n) must be a ‘linear’ function of integern:

f (n) = λn + α (mod sπ) (A.2)

whereα, λ are two constants, ands = 1 (for even numbern) or 2 (for odd numbern).
Thus (A.1) becomes

F(n)− F(m) = [λ(n +m) + α](n−m) (mod 2π). (A.3)

Proof. Leta andb(6= a) be two fixed integers andx be an integer that keeps(a+b+x)/2 being
an integer. Froma, b, andx we construct three integers:A = (a−b+x)/2,B = (a+b−x)/2,
C = (−a + b + x)/2, thusa = A +B, b = B +C, x = C +A. From (A.1), we have

F(B)− F(A) = f (a)(b − x) (mod 2π) (A.4)
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F(C)− F(B) = f (b)(x − a) (mod 2π) (A.5)

F(C)− F(A) = f (x)(b − a) (mod 2π). (A.6)

Using (A.4) and (A.5)−(A.6), we obtain

f (x)(b − a) = f (a)(b − x) + f (b)(x − a) (mod 2π). (A.7)

For odd numberx, puttinga = n0 (n0 is an even number) andb = n0 + 1 into (A.7), we have

f (x) = f (n0)(n0 + 1− x) + f (n0 + 1)(x − n0) (mod 2π). (A.8)

For even numberx, puttinga = n0 + 1 andb = n0 + 3 into (A.7), we have

2f (x) = f (n0 + 1)(n0 + 3− x) + f (n0 + 3)(x − n0 − 1) (mod 2π). (A.9)

From (A.8),f (n0 + 3) can be written as

f (n0 + 3) = −2f (n0) + 3f (n0 + 1) (mod 2π). (A.10)

Thus (A.9) becomes

2f (x) = 2f (n0)(n0 + 1− x) + 2f (n0 + 1)(x − n0) (mod 2π) (A.11)

or

f (x) = f (n0)(n0 + 1− x) + f (n0 + 1)(x − n0) (mod 2π). (A.12)

From (A.8) and (A.12), we obtain (A.2), whereλ = [f (n0 + 1) − f (n0)] and α =
(n0 + 1)f (n0)− n0f (n0 + 1) are two constants.

Putting (A.2) into (A.1), we obtain (A.3) by noting that ifn+m is an even number,n−m
is also an even number, thus(n−m)kπ = 0(mod 2π) for any integerk. �
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